Online Markov Decision Processes

نویسندگان

  • Eyal Even-Dar
  • Sham M. Kakade
  • Yishay Mansour
چکیده

We consider a Markov decision process (MDP) setting in which the reward function is allowed to change after each time step (possibly in an adversarial manner), yet the dynamics remain fixed. Similar to the experts setting, we address the question of how well an agent can do when compared to the reward achieved under the best stationary policy over time. We provide efficient algorithms, which have regret bounds with no dependence on the size of state space. Instead, these bounds depend only on a certain horizon time of the process and logarithmically on the number of actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chain Anticipation for the Online Traveling Salesman Problem by Simulated Annealing Algorithm

The arc costs are assumed to be online parameters of the network and decisions should be made while the costs of arcs are not known. The policies determine the permitted nodes and arcs to traverse and they are generally defined according to the departure nodes of the current policy nodes. In on-line created tours arc costs are not available for decision makers. The on-line traversed nodes are f...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

Online Learning in Stochastic Games and Markov Decision Processes

In their standard formulations, stochastic games and Markov decision processes assume a rational opponent or a stationary environment. Online learning algorithms can adapt to arbitrary opponents and non-stationary environments, but do not incorporate the dynamic structure of stochastic games or Markov decision processes. We survey recent approaches that apply online learning to dynamic environm...

متن کامل

Online Markov decision processes with policy iteration

The online Markov decision process (MDP) is a generalization of the classical Markov decision process that incorporates changing reward functions. In this paper, we propose practical online MDP algorithms with policy iteration and theoretically establish a sublinear regret bound. A notable advantage of the proposed algorithm is that it can be easily combined with function approximation, and thu...

متن کامل

Solving Hidden-Semi-Markov-Mode Markov Decision Problems

Hidden-Mode Markov Decision Processes (HM-MDPs) were proposed to represent sequential decision-making problems in non-stationary environments that evolve according to a Markov chain. We introduce in this paper Hidden-Semi-Markov-Mode Markov Decision Processes (HS3MDPs), a generalization of HM-MDPs to the more realistic case of non-stationary environments evolving according to a semi-Markov chai...

متن کامل

Online Regret Bounds for Markov Decision Processes with Deterministic Transitions

We consider an upper confidence bound algorithm for Markov decision processes (MDPs) with deterministic transitions. For this algorithm we derive upper bounds on the online regret (with respect to an (ε-)optimal policy) that are logarithmic in the number of steps taken. These bounds also match known asymptotic bounds for the general MDP setting. We also present corresponding lower bounds. As an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2009